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Evolution equations for the orientation distribution of axisymmetric particles in periodic flows are derived in
the regime of small but nonzero Brownian rotations. The equations are based on a multiple time scale approach
that allows fast computation of the relaxation processes leading to statistical equilibrium. The approach has
been applied to the calculation of the effective viscosity of a thin disk suspension in an oscillating strain flow.

DOI: 10.1103/PhysRevE.73.041406 PACS number�s�: 82.70.Kj, 47.15.�x, 05.40.Jc, 92.10.Rw

I. INTRODUCTION

The rheological properties of a suspension will depend,
when the particles are nonspherical, on the orientation taken
by the particles in response to the external flow. For a few
particle shapes �e.g., the case of the ellipsoid �1��, equations
for the rotation dynamics exist in closed form, and it is pos-
sible to determine the orientation distribution of the particles
in suspension. However, unless a mechanism for the achieve-
ment of a statistical equilibrium is introduced, the orientation
distribution will depend on the state in which the suspension
is prepared initially. In the case of microscopic particles, one
such mechanism is provided by Brownian rotations �2�. It is
still unclear whether inertia and interaction with other par-
ticles may contribute to the equilibration mechanism.

An equilibrium distribution could be achieved alterna-
tively by the presence of chaos in the rotation dynamics;
unfortunately, the importance of chaos turns out to be small
in most situations. In the case of a simple shear and axisym-
metric particles, the particle motion is periodic �1�. This mo-
tion becomes aperiodic in the case of a time-dependent flow,
but remains nonchaotic for axisymmetric particles �3�. Chaos
arises in the motion of a triaxial ellipsoids in a simple shear
�4�, but, depending on the axis ratios, large domains of initial
conditions remain associated with regular orbits and to the
absence of a uniquely defined equilibrium distribution. Fur-
thermore, for weak Brownian motion, the regular regions
will act as attractors for the chaotic orbits and will provide
the bulk of the orientation distribution.

The equilibrium orientation distribution of a Brownian
particle has been determined in various important limit re-
gimes, depending on the value of the Peclet number Pe, de-
fined as the ratio of the velocity gradient and the angular
diffusivity �which has the dimension of a frequency�. The
case of strong Brownian rotation was considered by Burgers
�5� leading to an orientation distribution that in first approxi-
mation can be considered isotropic. A systematic perturba-
tion theory in powers of Pe was introduced in �6�, allowing
the calculation of the effective viscosity of dilute suspen-
sions, for values of Pe up to 20–30 �7�.

More interesting is the case of weak Brownian motion, in
which the form of the equilibrium distribution is determined
by the structure of the orbits in orientation space, which in
turn depends on the imposed flow. A technique for the deter-
mination of the equilibrium distribution of weakly Brownian
particles, based on singular perturbation analysis of the dif-

fusion equation in orientation space, was derived in �8� for
the case of axisysmmetric particles in a simple shear.

In the present paper, an alternative approach will be pre-
sented, based on the perturbative determination of the orbits
in orientation space. This approach will appear to be appro-
priate in the case the flow is time-dependent, and, more in
general, when analytical expressions for the unperturbed or-
bits are not available. For the sake of definiteness, the dy-
namics of a small disk in the field of an oscillating strain
flow will be analyzed, and its contribution to the medium
effective viscosity determined. This kind of flow could be
obtained by means of a four-roll mill, as described in �3�;
more interestingly, as it will be illustrated in the next section,
an oscillating pure strain is what is seen by a particle in the
velocity field of a gravity wave. This turns out to have ap-
plication to models of wave propagation in polar seas. In
fact, under cold and windy conditions, high concentrations of
millimeter size ice crystals, called frazil ice, are generated in
the water, modifying the medium viscosity and leading to
increased wave damping �9,10�. �Given the crystal size, Pe is
in this case typically very large.�

This paper is organized as follows. In the next section the
orientation dynamics of a small disk will be analyzed in the
absence of Brownian rotations. In Sec. III, the diffusion and
drift across orbits in orientation space, produced by a weak
noise, will be calculated perturbatively. In Sec. IV the results
will be applied to the calculation of the effective viscosity of
a dilute small disk suspension. Section V is devoted to con-
clusions.

II. UNPERTURBED ORIENTATION DYNAMICS

Consider the motion of a particle in a velocity field U
= �U1 ,U2 ,0�, which, at the particle position, has zero vortic-
ity, and strain E= ��U+ ��U�T� /2 with components in the
directions x1 and x2:

E = e��1 + ��cos �t , �1 − ��sin �t

�1 − ��sin �t , − �1 + ��cos �t
� . �1�

The interest in Eq. �1� is that it describes what is experienced
by a fluid element in a gravity wave. In fact, the velocity
field of a small amplitude gravity wave, would read, choos-
ing the x2 axis pointing downward from the unperturbed wa-
ter surface at x2=0 �11�:
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U1 = Ũ�e−kx2 + ek�x2−2h��sin�kx1 − �t� ,

U2 = Ũ�e−kx2 − ek�x2−2h��cos�kx1 − �t� , �2�

where h is the water depth. From the potential nature of the
flow, the vorticity of the flow �= ��U− ��U�T� /2 is zero
and the strain at the sea surface x2=0, has the form given by

Eq. �1�, with e=kŨ, �=exp�−2kh�, and an initial phase dif-
ferent from zero for x1�0. For small wave amplitudes, the
displacement of a particle initially at the water surface will
be small and the strain field experienced E�x�t� , t�
�E�x�0� , t� will be given by Eq. �1�. Expressions for the
strain field in the form of Eq. �1� can be shown to occur also
for h→�, from the superposition of progressive and regres-

sive waves, with e=kŨ+�kŨ−, �= Ũ− / Ũ+, and Ũ± the am-
plitudes of the two wave components.

For �=0, Eq. �1� describes a constant strain rotating with
frequency � /2 around the x3-axis, which, in the gravity wave
example, is associated with particle orbits that are perfectly
circular �11�. Transforming to the rotating reference frame
leads to the new expression for the strain field

E = e� � sin 2�t , 1 + � cos 2�t

1 + � cos 2�t , − � sin 2�t
� �3�

�the initial phase of the rotation has been chosen to produce,
at t=0, a strain field with expanding direction at � /4 with
respect to the new x1 axis; see Appendix A�. In the rotating
reference frame, an additional vorticity field is produced:

� =
�

2
� 0 1

− 1 0
� . �4�

For ��0, this is a time-dependent planar flow, of the kind
discussed in �3�, which is known to produce aperiodic behav-
iors in the particle orientation dynamics.

The motion of a revolution ellipsoid, with symmetry axis
identified by the versor p, in the presence of the strain and
vorticity fields E and �, is described by the Jeffery’s equa-
tions �1�:

ṗ = � · p + G�E · p − �p · E · p�p� . �5�

The parameter G gives the ellipsoid eccentricity, defined in
terms of the particle aspect ratio r=a /b, where a and b are,
respectively, along and perpendicular to the symmetry axis,
by means of the relation

G =
r2 − 1

r2 + 1
.

Introducing polar coordinates �see Fig. 1� and normalizing
time and vorticity by the strain strength e: �→� / �−2Ge�
and t→−Get, the Jeffery’s equation �5�, using Eqs. �3� and
�4�, will take the form:

�̇ = − � + ���,t� ,

ċ = −
1

2
����,t�c , �6�

with c=tan 	, dot and prime indicating respectively, d /dt and
� /��, and:

���,t� = − cos 2� − � cos�4�t + 2�� ,

����,t� = 2�sin 2� + � sin�4�t + 2��� �7�

�more details in Appendix A�.
Following �3�, the orbits can be classified studying the

Poincare map Pn��̄�=mod���nT � �̄� ,��, with T= �
2� the pe-

riod of �, where ��t � �̄� obeys the first of Eq. �6� with

��0 � �̄�= �̄. This eliminates the explicit time dependence
from the dynamics, and will allow to isolate the slow, noise
produced deviation between orbits, from the fast motion
along them �see next sections�.

Some properties of the Poincare map can be obtained
from inspection of Eqs. �6� and �7�. In particular, it is pos-
sible to see, from ��� , t�=��−� ,−t� and the form of Eq. �6�,
that the following relation holds:

P−n�− �̄� = − Pn��̄� , �8�

and, therefore, the Poincare map is symmetric under the
double reflection 	� , Pn
→ 	�−� ,�− Pn
 �see Fig. 2�.
This has the consequence that fixed points, when present,
would come in pairs located symmetrically around �=� /2
�see Fig. 3�a��.

A fixed point in the Poincare map will be associated with
a periodic � and correspond to coherent orientation of the
particles. This regime is clearly produced by the aligning
effect of strain on the particle dynamics, which becomes
dominant in the small � range. In the present case, Eqs. �6�
and �7� appear to lead at most to a pair of fixed points, of
which the the stable one is located at ��� /2 �see Fig. 3�a��.
The stable fixed point tends to �=3� /4 at �=0, correspond-
ing to alignment of the long ellipsoid axis with the strain
expanding direction.

A transition to a coherent orientation regime is predicted
in the case of a deep gravity wave �12� at the crossover
frequency �c=1 �no superposition of regressive and progres-
sive components�. Now, at �c�1, the small wave amplitude

FIG. 1. The coordinate system. The axes xi are in the rotating
reference frame.
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approximation, leading to Eqs. �6� and �7� ceases to be valid
�back to dimensional units, one would have for the particle

displacement 
x� Ũ /�c�k−1�. Nonetheless, the linearized
theory provides a qualitatively correct picture, as a transition
to a coherent orientation regime is observed experimentally
in wave tanks, although with a larger transition frequency
�c�1.43 �9�. The presence of a coherent orientation regime
appears to be preserved for ��0 with a crossover frequency
�c slowly decreasing as �→1 �at ��0.82, one has still �c
�0.7�. The decrease in the crossover frequency can be ex-
plained in terms of the destabilization of the fixed particle
orientation in the rotating frame, by the oscillating strain
component of Eq. �3�.

The alternative regime of random particle orientation, is
associated with ���nT�� increasing monotonously with n,
with Pn��� generally aperiodic. In this case, from continuity

of ��t � �̄�, Pn��̄� will be topologically equivalent to an irra-

tional rotation, and the sequence Pn��̄� originating from a

single �̄ will fill densely the interval �0,��. An ergodic prop-
erty is then satisfied, i.e., it is possible to calculate averages
over � as time averages. Furthermore, from Poincare recur-

rence, the Pn��̄� sequence will come arbitrarily close to the
initial condition for some n.

An important property is the following: If the orbit start-

ing from a certain �̄ is approximately closed at t=nT, as
shown in Fig. 3�b�, the same will occur with the orbits start-

ing from any other initial condition. In fact, if Pn��̄�− �̄ is

small, the same will be true also for Pn�Pm��̄��− Pm��̄� with
m arbitrary. This is consequence of the dynamics of � not
being chaotic �i.e., neighboring trajectories do not separate
asymptotically�. Hence, exploiting the fact that, from ergod-

icity, Pm��̄� fills densely the whole interval �0,��, Pn���
−� will be small for � generic.

Turning to the polar angle, if the orbit in � is approxi-

mately closed at nT, also c�nT � c̄ , �̄� will come arbitrarily

close to the initial condition c�0 � c̄ , �̄�= c̄. Hence, to identify
approximately closed orbits, it is sufficient to look for the

recurrence of the Poincare map Pn��̄�. To see why this prop-
erty holds, Eq. �6� can be integrated to give:

ln
c�nT�c̄,�̄�

c̄
= −

1

2
ln

�Pn��̄�

��̄
,

and the condition c�nT � c̄ , �̄�� c̄ will be satisfied provided

�Pn /��̄�1. In the present case, the condition �Pn /��̄�1 is

satisfied provided Pn��̄�� �̄, i.e., if the orbit is approxi-

mately closed. The contrary would require �Pn /��̄ to oscil-

late in �̄ around �Pn /��̄=1. However, if �Pn��̄�− �̄��� for

for some small �, the difference �Pn /��̄−1 could remain of
O�1� in intervals at most of length O���, in which one would

have in consequence �2Pn /��̄2=O��−1�. But this is prevented
from the smoothness of the trajectories and of the functions
� and ��.

III. THE EFFECT OF NOISE

A. Coherent orientation regime

Noise produces qualitatively different effects in the coher-
ent and in the random orientation regimes. In the coherent
orientation regime, the main effect is smearing the transition
to the random orientation regime. It is easier to describe what
happens at the transition for �=0, where analytical expres-
sions for ��t� and c�t� are available. When the crossover
frequency �c=1 is approached from above, i.e., from the
random orientation regime, the rotation period for �: Tr, in
the absence of noise, will tend to infinity like ��2−1�−1/2

�12�. For ��1, the particle is stuck at the stable fixed point

�̄= �cos−1 �+�� /2 and the period is by definition infinite. It

FIG. 2. Symmetry of the Poincare map for the dynamics of Eqs.
�6� and �7�. Values of the parameters: �=1.4, ��0.37, n=1; G
�0 �oblate ellipsoid�. From Eq. �8�, one has that P−n��−��=�
− Pn��� and therefore the plot is symmetric under reflection across
the diagonal line Pn=�−�.

FIG. 3. Poincare map for the coherent orien-
tation �a� and the random orientation regime �b�
of an oblate ellipsoid in a shallow water wave
with ��0.37. Notice in case �a� the stable fixed
point at ��� /2 and the unstable one at �
�� /2. With prolate ellipsoids, the fixed points
would have been exchanged. The value of n in
the random orientation case �b� has been chosen
to lead to approximately closed orbits. Notice that
�=� /2 remains the best approximation to a fixed
point �i.e., a closed orbit of period nT�.
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turns out, that adding a small noise eliminates divergence of
Tr for �→�c, as noise allows the particle to escape from the
fixed point.

The time of escape from the fixed point can be expressed
in terms of the inverse of the probability for � to reach the

border of the basin of attraction for �̄, which is �=� /2; in
other words: Tr

−1� P���� /2�. The probability P���� /2�
could be roughly estimated, approximating the dynamics of
� by the one of the Langevin equation obtained through

linearization around �̄, in the presence of noise, of the first of
Eq. �6�:

d� = 2�� − �̄�sin 2�̄dt + D1/2dW .

Here dW is the Brownian noise increment �Wiener process
�13��: �dW=0, �dW2=dt, and D is supposed small. This
Langevin equation leads to the PDF �probability density
function� for � �13�:

��� = const. exp�−
2�sin 2�̄�

D
�� − �̄�2� .

For small values of D, P���� /2���� /2� and, therefore:

Tr � exp�2�sin 2�̄�
D

��̄ − �/2�2� .

Thus, the rotation period is exponentially long in the inverse
noise amplitude and the effect of Brownian rotations on the
orientation distribution, which is governed by the stable fixed
point of Pn���, will vanish in the zero noise limit.

B. Random orientation regime

In the random orientation regime, the role of noise in
determining an equilibrium orientation distribution is funda-
mental. If Brownian rotations were strictly zero, the evolu-
tion of the PDF �� ,c ; t� would be given by propagation
along the unperturbed trajectories described by Eq. �6�,
which, from now on, will be identified by subscript zero:

��0�t��̄�,c0�t�c̄,�̄�;t� = ��̄, c̄;0�J��̄, c̄� , �9�

where J��̄ , c̄�= �det��d�0 ,dc0� / �d�̄ ,dc̄���−1 is the Jacobian of

the transformation 	�̄ , c̄
→ 	�0 ,c0
. This PDF is itself recur-
rent at the recurrence times ti=niT, i=1,2 , . . ., for which

Pni

0 ��̄�� �̄ and, therefore, also c0�ti � c̄ , �̄�� c̄ �see the end of
the last section�. Hence, memory of any initial PDF
�c ,� ;0� would be preserved at arbitrary large ti: �c ,� ; ti�
��c ,� ;0� and no relaxation to equilibrium would be pos-
sible.

Adding noise allows us to reach statistical equilibrium in
a time of the order of the inverse of the noise amplitude.
Restricting to the discrete times nT, to make the process
stationary, the equilibrium PDF for � is obtained from ergod-
icity and is the unique stationary PDF E���=const.��
+��� ,0��−1. The statistics of c, can then be described in
terms of the conditional PDF �c ���=E�� ,c� /E���, where
E�� ,c� is the equilibrium joint PDF at the instants t=nT.

Notice that, from ergodicity of �, it is sufficient to prescribe

the form of �c̄ � �̄� at a single position �̄. In fact, to obtain

�c ��� at �� �̄, to lowest order in the noise, it is sufficient to

propagate Eq. �9� to t=nT and exploit the fact that Pn
0��̄�

=mod��0�nT � �̄� ,�� is dense in �0,��.
The first step to obtain a kinetic equation for �c̄ � �̄�, is to

calculate the noise produced trajectory separation 	c�t � c̄ , �̄�
−c0�t � c̄ , �̄� ,��t � �̄�−�0�t � �̄�
 at the recurrence times t= ti,

where, choosing appropriately ti, the differences c0�ti � c̄ , �̄�
− c̄ and Pni

0 ��̄�− �̄ can be made small at pleasure. However,

since the conditioning in �c̄ � �̄� is at �̄ and not at ��t � �̄�, it
is then necessary to correct the first step and calculate the

deviation c�t � c̄ , �̄�−c0�t � c̄ , �̄� at the time t̂i �equal to ti only

in the zero noise limit�, at which mod���t̂i � �̄� ,�� and �̄ are
strictly equal. This means considering, instead of a Poincare
map synchronized with the period of �, the one synchronized

with the rotation period in �, i.e., with the crossing of �̄ by
�.

Accounting for the effect of Brownian rotations, the Jef-
fery’s equations will read �see Appendix B�:

d� = �− � + ���,t��dt + D1/2g1/2�c�dW�,

dc = �− 1
2����,t�c + Df�c��dt + D1/2h1/2�c�dWc, �10�

where D has the meaning of a diffusion constant �in the
present dimensionless units, D−1= Pe�, dWk, with k=� ,c, are
the Brownian increments:

�dWk = 0, �dWkdWj = �kjdt , �11�

and the functions f , g, and h are given by �see again Appen-
dix B�:

f�c� =
1

c
�1 + c2��1

2
+ c2� ,

g�c� =
1

c2 + 1 and h�c� = �1 + c2�2. �12�

The unperturbed orbits, as already mentioned, indicated by
	�0 ,c0
, obey Eq. �6�:

��̇0 = − � + �0,

ċ0 = − 1
2�0�c0,

� �13�

with �0=���0 , t� and similar definition for �0�. For small
noise, the correction can be determined as an expansions in
powers of D1/2: �=�0+�1/2+�1+¯ and similarly for c, with
the initial condition �k�0�=ck�0�=0 for k�0. The lowest
order correction is obtained from linearization of Eq. �10�
around 	�0 ,c0
:

d�1/2 = �0��1/2dt + D1/2g0
1/2dW�,
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dc1/2 = �2�0c0�1/2 − 1
2�0�c1/2�dt + D1/2h0

1/2dWc. �14�

From Eq. �11� and from linearity of Eq. �14� ��1/2= �c1/2
=0, but �1/2 and c1/2 are not zero. The covariance equations
obtained from Eq. �14� are:

d

dt
��1/2

2  = 2�0���1/2
2  + Dg0,

d

dt
��1/2c1/2 = 1

2�0���1/2c1/2 + 2�0c0��1/2
2  ,

d

dt
�c1/2

2  = 4�0c0��1/2c1/2 − �0��c1/2
2  + Dh0, �15�

and lead to a diffusion contribution to the deviation. To ob-
tain the drift contributions, it is necessary to consider the
next order in the expansion of Eq. �10�, and the result is:

d

dt
��1 = �0���1 − 2�0��1/2

2  ,

d

dt
�c1 = −

1

2
�0��c1 + 2�0c0��1 ,

+ 2�0��1/2c1/2 + �0�c0��1/2
2  + Df0. �16�

The lowest order contributions to diffusion and drift are,
therefore, both O�D�, as they should. Some simplifications of
Eqs. �13�, �15�, and �16�, taking care of the singularities of
Eq. �12� at c=0, are still possible and are illustrated in Ap-
pendix C.

Once the noisy trajectory 	��t � �̄� ,c�t � c̄ , �̄�
 has been cal-
culated up to the recurrence time ti, it is necessary to follow

it back to the time t̂i at which mod���t̂i � �̄� ,��= �̄ and calcu-
late the difference

ĉ = c�t̂i�c̄,�̄� − c0�ti�c̄,�̄� � c�t̂i�c̄,�̄� − c̄ .

This operation is equivalent to the procedure, implicit in

Ref. �8�, of subtracting from the deviation 	��ti � �̄�
−�0�ti�̄� ,c�ti � c̄ , �̄�−c0�ti � c̄ , �̄�
�	�1/2+�1 ,c1/2+c1
, the
component along the unperturbed Jeffery’s orbit, and keep-
ing only the part associated with percolation between the
orbits. The necessary operations are illustrated in Fig. 4, and
it is assumed that the orbits can be parametrized locally with

���0�t � �̄� �this is possible if �̄ is chosen away from the
turning points�. The first step is to calculate the difference in
c between noisy and unperturbed orbits, at the azimuthal

angle �=��ti � �̄� where mod���ti � �̄� ,��� �̄+�1/2+�1, cor-
responding to the points y and z in Fig. 4. To O�D�, the value
of c at z is

c̄ + c̃ = c̄ + c���1/2 + �1� +
1

2
c���1/2

2 , �17�

where c� and c�� give the rise in c along the unperturbed
trajectory:

c� =
dc0

d�
and c�� =

d2c0

d�2 , �18�

with d/d� the derivative along the unperturbed orbit:

d

d�
=

1

�̇0

� �

�t
+ �̇0

�

��
+ ċ0

�

�c
� , �19�

which is calculated at �= �̄. Combining Eqs. �18� and �19�
with Eq. �13�:

c� =
��c0

2�� − �0�
,

c�� = −
�̇0�0�c0

�� − �0�3 +
��0�

2 − �̇0��c0

�� − �0�2 −
2�0c0

� − �0
, �20�

where �̇=�t� and similar for �̇�. To obtain ĉ, it is necessary
to correct the difference in c between y and z, i.e., c1/2+c1
− c̃, for the contribution from the deviation between unper-
turbed orbits, which, in the present case, is �c1/2+c1− c̃�
���1/2+�1�c�c, where

c�c = �c�/�c = c0
−1c�. �21�

Working again to O�D�:

ĉ = c1/2 + c1 − c̃ − �1/2c�c�c1/2 − c̃� , �22�

corresponding to a time along the trajectory:

t̂i = ti + �� + ���̄,0��−1�1/2 + O�D� . �23�

Using the relation ��1/2c1/2=−c0��1 �see Appendix C�, to-
gether with Eqs. �17� and �22�, the following result for the
diffusion and drift across Jeffery’s orbits is obtained, to
O�D�:

�ĉ2 = �c1/2
2  + c�

2��1/2
2  − 2c���1/2c1/2 ,

�ĉ = �c1 + �c�c�c −
1

2
c�����1/2

2  , �24�

and combining with Eqs. �20� and �21�, the noise induced
deviation between Jeffery orbits is fully determined.

FIG. 4. Orbit behavior in the proximity of the recurrent point

x= 	�̄ , c̄
; x-z unperturbed orbit; w-y noisy orbit. The deviation be-
tween orbits is identified by ĉ.
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IV. DETERMINATION OF THE ORIENTATION
DISTRIBUTION

The quantities �ĉ2 and �ĉ allow to determine the noise
contribution to orbit deviation, at the corrected recurrence

times t̂i, at which mod���t̂i � �̄� ,��= �̄. Both quantities �ĉ2
and �ĉ are obtained from integrals along the orbits and it is
expected that an averaging process takes place, with �ĉ2 / ti

and �ĉ / ti tending to finite limits as ti→�. Integrating nu-
merically Eqs. �13�, �15�, and �16� �or, more simply, Eq.

�C2��, with the initial condition 	�0�0 � �̄� ,c0�0 � c̄ , �̄�

= 	�̄ , c̄
= 	0,0
 and then substituting, with Eqs. �20� and �21�,
into �24�, leads to the result in Fig. 5. Self-averaging of
�ĉ2 / ti takes place also for relatively large values of the tol-
erance �, which identifies recurrence and, therefore, the se-

quence ti= ti��� i=1,2. . ., through the condition �Pn
0��̄�− �̄�

��.
It is thus possible to introduce effective drift and diffusion

coefficients ā and D̄:

ā�c̄,�̄� = lim
i→�

ti
−1�ĉ, D̄�c̄,�̄� = lim

i→�
ti
−1�ĉ2 , �25�

which will describe the dynamics of the Poincare map c̄�t̂i�
�c�t̂i � c̄�0� , �̄�:

c̄�t̂i� − c̄�0� = āti + D̄1/2�W�ti� − W�0�� . �26�

This is a discrete Langevin equation, in which W�t� is again
the Wiener process, with ��W�t�−W�0��2= t. In the small D
limit, the recurrence times ti can be treated as continuous on
the scale of the relaxation to equilibrium. It is then possible
to obtain a Fokker-Planck equation for the evolution of the
PDF for c̄�t�, which, by construction, is nothing else than

�c̄ � �̄�. Now, from Eq. �23�:

�c̄��̄; t̂i� − �c̄��̄;0� = ��1 + O�D1/2��ti�t�c̄��̄;t��t=0,

and, to lowest order in D, it is possible to disregard the
difference between t̂i and ti in ; this is equivalent to substi-
tute c̄�ti�− c̄�0� into the left-hand side of Eq. �26�. Taking the
continuous limit, leads to the Langevin equation dc̄= ādt

+ D̄1/2dW, which is associated with the Fokker-Planck equa-
tion �13�:

�t̄ + �c̄�ā� =
1

2
�c̄

2�D̄� , �27�

and the notation t̄, indicating a slow time scale, is a reminder
that Eq. �27� is meaningful only at long time scales with
respect to ti− ti−1. Slow variation of the flow parameters en-
tering Eq. �10� would lead to the dependence of the coeffi-
cients in Eq. �27� on the slow time t̄. As in �8�, the fact that

both ā and D̄ depend linearly in D implies that the equilib-
rium PDF is independent of the noise amplitude.

As statistical equilibrium will be achieved on the time
scale D−1, in order for the approach to be meaningful, it is

necessary that the ti used to define ā and D̄ satisfy Dti�1.
Actually, excellent convergence is obtained already for ti
rather small; in the case of Fig. 6, at ti=20T, corresponding
to �=0.1. Notice that the case considered in Fig. 6, which is
identical to the deep water wave regime considered in �12�,
can be mapped to a constant simple shear by a redefinition of

the eccentricity G. �In this case, the aperiodicity of Pn
0��̄�

originates not from the dynamics, but from the sampling
time T and the rotation period Tr= ��2−1�−1/2 being incom-

mensurate.� The PDF �c̄ � �̄� can then be compared with the
analytical result from the theory of Leal and Hinch �the func-
tion f�C� in Eq. �17� of their paper� �8�. As can be seen from
Fig. 6, the two approaches give indistinguishable results al-
ready for ti=20T, �=0.1. Similar convergence to the limit
result is observed for ��0, when comparison with the
theory of Leal and Hinch is not possible.

Knowledge of the PDF �c̄ � �̄� allows determination of
the effective viscosity of a dilute disk suspension in the os-

FIG. 5. Determination of the normalized diffusivity �c1/2
2  /Dt

for different values of the tolerance � entering the recurrence con-

dition �Pn��̄�− �̄��� with 	�̄ , c̄
= 	0,0
. Values of the parameters
�=1.4, ��0.37. Thin line �=0.4; heavy line �=0.1; diamonds �
=0.01 �the diamonds identify the actual position of the recurrence
times�.

FIG. 6. Comparison of the PDF �c̄ � �̄� calculated using for ā

and D̄ different values of ti �see Eq. �25��. Values of the parameters:

�=1.4, �=0, �̄=0. Heavy line: ti=3T, �=0.4; stars: ti=20T, �
=0.1; thin line: Leal and Hinch theory �8�.
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cillating strain field of Eq. �1�. The viscous stress for a sus-
pension of axisymmetric ellipsoids reads �8,14�, indicating
with � and �, respectively, the solvent viscosity and the
suspended phase volume fraction:

� = 2�E + 2��	2A�pppp:E + 2B��pp · E + E · �pp�

+ CE
 , �28�

where, in the present time dependent situation, the averages
are intended over orientation and time. The coefficients A–C
depend on the particle geometry �12�:

A =
5

3�r
+

104

9�2 − 1, B = −
4

3�r
−

64

9�2 +
1

2

and C =
8

3�r
+

128

9�2 ,

with r the particle aspect ratio, supposed small. These ex-
pressions correct to O�1�, similar ones derived in �8�. From
the stress �, the effective viscosity �̄ can be calculated in
terms of the viscous dissipation in the suspension:

�̄ =
1

2

�:E

E:E
ª �1 + K��� , �29�

where K is called the reduced viscosity. Expressing the ver-
sor p in function of the angles � and 	, and using Eqs. �28�
and �29�:

K = A�sin4 	 sin2 2� + 2B�sin2 	 + C . �30�

As in �8�, the average over orientation is split into parts
along and transverse to the orbit. In the present situation,
however, evaluation of the average along the orbit is slightly
more delicate than in the time-independent case. At a generic
time t the average of a function f�� ,c� will be:

�f�t� =
1

n
�
i=1

n � dc̄�c̄��̄�f���t + iT��̄�,c�t + iT�c̄,�̄�� ,

where, from ergodicity, memory of the initial condition �̄ is
lost for n→�. Carrying on the average over one period,
which, in the case of a wave, from Eq. �2�, is equivalent also
to a space average, leads to the average along an orbit:

�f =
1

nT
� dc̄�c̄��̄��

0

nT

dtf���t��̄�,c�t�c̄,�̄�� . �31�

Evaluating Eq. �30� with Eq. �31� leads to the values of the
reduced viscosity shown in Fig. 7. The calculation has been

carried on, using as a recurrence point, �̄=0; the value of the
particle aspect ratio has been chosen to be consistent with
frazil ice measurements �9�. The same qualitative regime ob-
served for �=0 is reproduced here, namely, a dip in the
reduced viscosity at the crossover from the coherent rotation
regime to the random orientation �12�.

In the case of gravity waves, the coherent regime would
always be associated with high amplitude waves, corre-
sponding to small values of the normalized frequency �. The

reduced viscosity has been calculated in this range from Eq.
�30�, fixing 	=� /2 and integrating the equation for �, in the
absence of noise, with the initial condition at a fixed point.

V. CONCLUSIONS

The numerical evaluation of the rheological properties of
a suspension of particles that are weakly Brownian is faced
with difficulties associated with the long integration times
necessary to achieve statistical equilibrium. Analytical tech-
niques for the calculation of the cumulative effect of the
Brownian noise on the dynamics are, therefore, necessary.
The technique presented in this paper can be seen as a mul-
tiple time scale analysis �15� in which the stochastic dynam-
ics is pushed to the slow scale, while the local strain and
vorticity are treated as fast variables. For the periodic flows
considered in this paper, the effective drift and diffusivity
coefficients are obtained integrating the fast �and aperiodic�
orientation dynamics up to the first recurrence time, at which
the approximation of a closed orbit is considered good
enough. Slow variations would be accounted for, sampling
the almost closed trajectory segments in appropriate way
along the particle orbit, and would lead to effective drift and
diffusivity coefficients depending on the slow time. Once the
effective drift and diffusivity were available, a Monte Carlo,
for the determination of the rheological properties of a sus-
pension, would be carried on at the slow time scale �this
would be associated formally with integration of the Fokker-
Planck equation �27��.

Application of these techniques to the dynamics of a thin
disk suspension in gravity waves, suggest that qualitative
behaviors in deep water, accounted for theoretically in �12�
and observed experimentally in �9�, should be preserved in
the shallow water regime. In particular, a transition from a
coherent rotation regime for large amplitude waves to a ran-
dom orientation, marked by a deep minimum in the medium
effective viscosity, should continue to be present. Away from
this regime, in the random orientation regime, the numerical
values of the effective viscosity appear to be only weakly
dependent on the water depth. This strengthens confidence in
experimental data on the sea ice effective viscosity from
wave tanks, in which the deep water condition is at the most

FIG. 7. Reduced viscosity, averaged over a period, for a suspen-
sion of disk-like particles with aspect ratio r=0.045. In the three
cases: �a� ��0.61; �b� ��0.37; �c� �=0.
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only approximately satisfied, as a test case of what happens
in the open sea �9,10�.

A natural extension of the techniques illustrated could be
the treatment of higher numbers of degrees of freedom. An
interesting example is the triaxial ellipsoid in a simple shear
considered in �4�. In this case, the angle 	 would be replaced
by the pair 		 ,�
 with � the rotation around the axis p. An
analysis in the whole phase domain would require, however,
consideration of the transition region from the regular orbits,
in which diffusion is dominated by Brownian rotation, to the
chaos dominated stochastic region.
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APPENDIX A: ORIENTATION DYNAMICS IN ROTATING
REFERENCE FRAME

The strain matrix in the laboratory frame, is provided by
Eq. �1�. Passing to the rotating frame:

R · E · RT = �1 + � cos 2�t , − � sin 2�t

− � sin 2�t , − 1 − � cos 2�t
� ,

where

R = � cos �t/2, sin �t/2

− sin �t/2, cos �t/2
�

is the matrix for an angle −�t /2 rotation. In term of compo-
nents, ui and vi=Rijuj are the components of a vector in the
laboratory and the rotating reference frame. In the rotating
frame, the fluid is seen rotating like vi:

v̇i = �ijv j, � =
�

2
� 0, 1

− 1, 0
� ,

and � is the vorticity of the fluid measured in the rotating
frame. One more rotation by � /4 produces Eq. �3�

R̂�1 + � cos 2�t , − � sin 2�t

− � sin 2�t , − 1 − � cos 2�t
�R̂T

= � � sin 2�t , 1 + � cos 2�t

1 + � cos 2�t , − � sin 2�t
� ,

where

R̂ =
1
�2

�1, − 1

1, 1
� .

As the next step, pass to adimensional variables:

t̂ = − Get, �̂ = −
�

2Ge
, Ê = e−1E .

This choice guarantees that, in the case of oblate ellipsoids,
the signs of the normalized times and frequency are pre-
served. Substituting into the Jeffery’s equation �5� gives:

dp

dt̂
= �̂� 0, 1

− 1, 0
�p − �Ê · p − �p · Ê · p�p� . �A1�

Introducing polar coordinates p= �sin 	 cos � , sin 	 sin � ,
cos 	� and using Eq. �3�, leads to the expressions:

E · p = sin 	� sin � + � sin�� + 4�̂t�
cos � + � cos�� + 4�̂t�

� �A2�

and

p · E · p = sin2 	�sin 2� + � sin�2� + 4�̂t�� . �A3�

The Jeffery’s equation can now be written in components.
Starting from 	, using Eqs. �A1�–�A3�:

ṗ3 = − sin 		̇ = cos 	 sin2 	�sin 2� + � sin�2� + 4�̂t�� ,

�A4�

which leads to the second of Eqs. �6� and �7�. Passing to the
equation for �:

ṗ2 = sin 	 cos ��̇ + cos 	 sin �	̇ = − �̂ sin 	 cos �

− sin 	�cos � + � cos�� + 4�̂t��

+ sin3 	�sin 2� + � sin�2� + 4�̂t��sin � ,

from which, using Eq. �A4�:

cos ��̇ = − �̂ cos � − cos ��1 − 2 sin2 ��

+ ��sin�2� + 4�̂t�sin � − cos�� + 4�̂t�� ,

and, after little algebra:

�̇ = − �̂ − cos 2� − � cos�2� + 4�̂t� ,

which is the first of Eqs. �6� and �7�.

APPENDIX B: NOISE TERM DETERMINATION

The noise term to add in Eq. �6� can be obtained directly
from the diffusion equation obeyed for zero flow by the ori-
entation PDF in the variables 	� ,c
. Alternatively, one may
consider the diffusion operator in the variables 	� ,	
:

�2 =
1

sin2 	

�2

��2 +
1

sin 	

�

�	
sin 	

�

�	
,

and determine the stochastic process leading to the Fokker-
Planck equation �2�� ,	�=0 �which has the isotropic solu-
tion �� ,	�= 1

2� sin 	�. One finds the increments for � and 	
produced by Brownian rotation in the time interval dt �13�:

d� = �sin 	�−1dW�, d	 =
1

2
cot 	dt + dW	,

where dWk, k=� ,	 are the Brownian increments

�dWk = 0, �dWjdWk = � jkdt .

Changing then variables from 	 to c and using Itô’s lemma,
one finds:
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dc = d	
dc

d	
+

1

2
�dW	

2
d2c

d	2 =
1

c
�1 + c2��1

2
+ c2�dt

+ �1 + c2�dW	,

and, using the expression sin 	=c�1+c2�−1/2 in d�, Eq. �10�
is finally obtained.

APPENDIX C: ALTERNATIVE FORM OF THE
PERTURBED ORBIT EQUATION

Equations �15� and �16� can be simplified, and the singu-
larity in 	=0 produced by the noise term in the first of Eq.
�10� eliminated, by the change of variables:

y1 = c0
2��1/2

2 , y2 = c0��1/2c1/2 ,

y3 = �c1/2
2 , y4 = c0�c1, y5 = c0

2��1 .

In the new variables, Eqs. �15� and �16� take the form:

ẏ1 = �0�y1 + Dg̃ ,

ẏ2 = 2�0y1,

ẏ3 = 4�0y2 − �0�y3 + Dh̃ ,

ẏ4 = − �0�y4 + 2�0y2 + �0�y1 + 2�0y5 + Df̃ ,

ẏ5 = − 2�0y1, �C1�

where Eq. �12� g̃=1+c0
2, h̃= �1+c0

2�2, and f̃ = �1+c0
2�� 1

2 +c0
2�.

Comparing the equations for y2 and y5, one sees that, thanks
to the initial condition yk�0�=0, y2=−y5 and then ��1/2c1/2
=−c0��1; thus the equation for ��1 can be eliminated from
�16�. Equation �C1� can then be further simplified to:

ẏ1 = �0�y1 + Dg̃ ,

ẏ2 = 2�0y1,

ẏ3 = 4�0y2 − �0�y3 + Dh̃ ,

ẏ4 = − �0�y4 + �0�y1 + Df̃ . �C2�
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